

Lewatit® MonoPlus SP 112 KR является мондисперсным, сильнокислотным, макропористым катионитом высшего качества в полностью отрегенерированной форме (мин. 99 % H⁺). Продукт имеет высокую степень очистки (крайне малое количество десорбирующихся хлорид-ионов и отсутствие органически связанного хлора!) и удовлетворяет требованиям использования катионитов в атомной энергетике.

Смолы Lewatit® для использования на атомных станциях (Lewatit® KR) обладают отличной механической и химической стабильностью и высокой осмотической стабильностью.

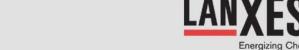
Благодаря своим отличным гидродинамическим свойстам, смолы Lewatit® KR гпозволяют работать на большой скорости потока. Высокая монодисперсность (коэффициент монодисперсности макс. 1,1) и крайне малое содержание мелких гранул (макс. 0.1 %) (< 0,315 mm) уменьшают потери давления по сравнению со стандартными смолами. Использование этих смол в радиоактивных водных контурах позволяет решать специальные задачи и гарантирует качество воды, полностью соответствующее требованиям индустрии атомной энергетики.

Продукт прошел тестирование в лаборатории ВНИИАЭС и рекомендован к применению на российских АЭС.

- » Удаления катионов, включая радиоактивные изотопы, из водных растворов (контроль pH адсорбцией избытка ⁷Li)
- » Удаления загрязняющих примесей из контуров реакторов на АЭС
- » Удаления радиоактивных катионов, высокая селективность к цезию-137
- » Обработки теплоносителя в первом контуре реакторов ВВЭР
- » Очистки продувочных вод парогенератора вне зависимости от применения различных корректирующих добавок (Левоксина, морфолина или этаноламина)
- » Удаления продуктов коррозии, включая механическую фильтрацию взвешенных частиц
- » Тонкой очистки на ФСД вместе с Lewatit® MonoPlus M 800 KR или Lewatit® MonoPlus MP 800 KR

Важно!

Перед началом эксплуатации или смешиванием с Lewatit® Monoplus MP 800 KR или Lewatit® MonoPlus M 800 KR проведите тщательную промывку катионита обессоленной водой.


Особые свойства данного продукта могут быть использованы оптимально лишь в том случае, если технология и конструкция фильтра соответствуют современному уровню. Более подробные консультации по данному вопросу можно получить непосредственно в отделе Технологий очистки жидкостей компании Ланксесс.

1/5

Данный документ содержит важную информацию и должен быть прочитан целиком.

Предыдущая редакция: 2014-01-13

Редакция: 2014-01-16

Общее описание

Ионная форма при	H ⁺
поставке	
Функциональная группа	Сульфокислота
Матрица	Стирол-дивинилбензол
Структура	Макропористая
Внешний вид	Бежевый,
	непрозрачный

Данные спецификации

		_
	метрическая система	
Коэффициент	макс.	1,1
однородности		
Средний размер гранул	ММ	0,67 (+/- 0,05)
Общая обменная	минимум экв/л	1,6
емкость		

Физико-химические свойства

		метрическая система	
Насыпная плотность	(+/- 5 %)	г/д	740
Плотность		примерно г/мл	1,18
Содержание воды		вес. %	56 - 60
Дыхательная разность	H⁺> Na⁺	макс. об. %	-8
Стабильность	в диапазоне рН		0 - 14
Сохранность	продукта	максимум месяцев	12
Сохранность	в диапазоне	°C	-20 - +40
	температур		
Ионная конверсия		мин. экв. %	99

2/5

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2014-01-16 Предыдущая редакция: 2014-01-13

Анализ следовых количеств элементов

Na	макс.	мг / кг сухой смолы	20
Ca	макс.	мг / кг сухой смолы	10
K	макс.	мг / кг сухой смолы	10
Mg	макс.	мг / кг сухой смолы	10
Fe	макс.	мг / кг сухой смолы	25
Cu	макс.	мг / кг сухой смолы	10
Al	макс.	мг / кг сухой смолы	10
Со	макс.	мг / кг сухой смолы	10
Pb	макс.	мг / кг сухой смолы	10
Hg	макс.	мг / кг сухой смолы	< 1
Тяжелые металлы (в виде Pb)	макс.	мг / кг сухой смолы	10
SiO ₂	макс.	мг / кг сухой смолы	50
Хлориды	макс.	мг/л	10

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2014-01-16 Предыдущая редакция: 2014-01-13

Рекомендуемые условия применения*

		метрическая система	
РАБОТА		•	
Рабочая температура	•	макс. °С	120
Рабочий диапазон рН			0 - 14
Высота слоя		мин. Мм	800
Коэффициент гидравлического сопротивления	(15 °C)	прим. кПа*ч/м²	0,8
Падение давления	1	макс. кПа	300
Линейная скорость	при насыщении	макс. м/ч	5 - 120
ДРУГИЕ ПАРАМЕТРЫ			
Линейная скорость	при обратной промывке (20 °C)	прим. м/ч	10 - 12
Расширение слоя	(20 °С, на м/ч)	прим. об. %	4
Пространство	для взрыхления (внешней/ внутренней)	об. %	80 - 100
РАБОТА, ФСД			
Высота слоя		мин. Мм	600
РЕГЕНЕРАЦИЯ, ФСД			
Регенерант	тип		HCl 4-6 H ₂ SO ₄ 1,5 / 4**
Регенерант	количество	прим. г/л	80 - 150
Регенерант	концентрация	прим. вес. %	2 - 10
Потребность в промывочной воде	быстро / медленно	прим. об. слоя	2/2

^{*} рекомендуемые условия использования относятся к использованию продукта при нормальных условиях работы. Они основаны на испытаниях, проводимых на опытных установках, и данных, полученных при промышленном применении. Тем не менее, требуются дополнительные расчеты необходимых объемов смолы для определенных параметров ионного обмена. Их можно найти в нашем Техническом Информационном Бюллетене.

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2014-01-16

Предыдущая редакция: 2014-01-13

Дополнительная информация и правила

Техника безопасности

Сильные окислители, такие как азотная кислота, могут вызвать бурную реакцию при контакте с ионообменной смолой.

Токсичность

Учитывать данные листа безопасности. Он содержит информацию об обозначениях, транспортировке и хранении, а также информацию об обращении с данным продуктом и данные по экологии.

Утилизация

В Европейском Сообществе утилизация ионообменных смол происходит согласно Европейской номенклатуре отходов, которая доступна на интернет-сайте Европейского сообщества.

Хранение

Рекомендуется хранить ионообменные смолы в сухом месте при температуре выше нуля, под крышей и без прямого воздействия солнечных лучей. Для предотвращения термического и осмотического шока замороженные ионнообменные смолы должны быть медленно разморожены при комнатной температуре

Приведенная выше информация, а также наши письменные, устные и основанные на экспериментах консультации по технологии применения, осуществляются самым добросовестным образом, но считаются лишь рекомендациями, не имеющими обязательной силы, также и в отношении возможных охраняемых прав третьих лиц. Консультации не освобождают Вас от собственной проверки наших консультационных рекомендаций и наших продуктов на их пригодность для предусмотренных технологических процессов и целей. Применение, использование и переработка наших продуктов, а также продуктов, изготовленных Вами на основании наших консультаций по технологии применения лежат за пределами наших возможностей контроля и поэтому находятся исключительно в сфере Вашей ответственности. Продажа продуктов осуществляется в соответствии с нашими ""Общими условиями продажи и поставки"". Вся информация и техническая поддержка предоставляется без гарантий и может быть изменена без предупреждений. Вы принимаете и освобождаете нас от ответственности в правонарушениях, контрактах и др., связанных с использованием нашей продукции, технической поддержки или предоставлении информации. Любое утверждение, не содержащееся здесь, не авторизовано и не связано с нами. Ничего, из приведенного здесь не может быть истолковано как рекомендация к использованию любого продукта в противоречии с патентом, связанным с материалом или его использованием. Никакой лицензии не подразумевается или она предоставляется при заявлении любого патента.

Lanxess Deutschland GmbH BUIPT D-51369 Leverkusen

www.lpt.lewatit.com www.lanxess.com

Данный документ содержит важную информацию и должен быть прочитан целиком.

Редакция: 2014-01-16

Предыдущая редакция: 2014-01-13

