

Lewatit® S 6328 A is a Food grade, strongly basic, macroporous type I anion exchange resin based on polystyrene. It is bead-shaped and has a special bead size distribution for use in the following processes:

- » Lewatit® WS system (fluidised bed)
- » Lewatit® VWS system (compound fluidised bed)
- » Lewatit® liftbed system
- » Standard co current regenerated system

Lewatit® S 6328 A is suitable in its chloride form for the decolorisation of:

- » juices from sugar production, expecially beet sugar
- » solutions of organic products, e.g. glycerin, amino acids

The macroporous structure and balanced resin matrix of Lewatit® S 6328 A facilitate the kinetics of adsorption and desorption. Substances adsorbed, e.g. hydrophilic high-molecular anionic organic substances and colorants from sugar solutions, can be desorbed easily by regeneration with a neutral or alkaline sodium chloride solution. Lewatit® S 6328 A is therefore highly recommended for use whereever complete and rapid removal of a relatively high concentration of organic substances is required. Use in combination with other Lewatit adsorption resins such as Lewatit® OC 1074 allows simultaneous fine polishing.

When using **Lewatit® S 6328 A** to treat potable water and the aqueous solutions listed above, special care should be given to the initial cycles of the new resin. Please refer to the recommended start-up conditions available on request.

The special properties of this product can only be fully utilized if the technology and process used correspond to the current state-of-the-art. Further advice in this matter can be obtained from Lanxess, Business Unit Ion Exchange Resins.

This document contains important information and must be read in its entirety.

General Description

·	
Ionic form as shipped	Cl
Functional group	Quaternary amine, type I
Matrix	Crosslinked polystyrene
Structure	Macroporous
Appearance	Beige, opaque

Specified Data

		metric units	
Uniformity Coefficient		max.	1.6
Bead size	> 90 %	mm	0.4 - 1.25
Effective size		mm	0.55 (+/- 0.05)
Total capacity		min. eq/l	1.0

Physical and Chemical Properties

,	•		
		metric units	
Bulk density	(+/- 5 %)	g/l	660
Density	•	approx. g/ml	1.06
Water retention	•	wt. %	58 - 63
Volume change	Cl> OH-	max. vol. %	20
Stability	at pH-range		0 - 14
Storability	of the product	max. years	2
Storability	temperature range	°C	-20 - +40

This document contains important information and must be read in its entirety.

Recommended Operating Conditions*

		metric units	
Operating temperature		max. °C	85
Operating pH-range			0 - 12
Bed depth		min. mm	800
Specific pressure drop	at viscosity 1 mPa*s	approx. kPa*h/m²	1.1
Pressure drop		max. kPa	250
Linear velocity	backwash (20 °C)	approx. m/h	6 - 8
Bed expansion	(20 °C, per m/h)	approx. vol. %	12
Freeboard	backwash (extern / intern)	vol. %	80 - 100
Regenerant			NaCl NaOH
Counter current regeneration	level	approx. g/l	NaCl 200 NaOH 10 - 20
Counter current regeneration	concentration	wt. %	NaCl 10 NaOH 1 - 2
Linear velocity	regeneration	approx. m/h	5
Linear velocity	rinsing	approx. m/h	5
Rinse water requirement	slow / fast	approx. BV	5
Co current regeneration	level	approx. g/l	NaCl 200 NaOH 10 - 20
Co current regeneration	concentration	approx. wt. %	NaCl 10 NaOH 1 - 2

^{*} The recommended operating conditions refer to the use of the product under normal operating conditions. It is based on tests in pilot plants and data obtained from industrial applications. However, additional data are needed to calculate the resin volumes required for ion exchange units. These data are to be found in our Technical Information Sheets.

This document contains important information and must be read in its entirety.

Additional Information & Regulations

Safety precautions

Strong oxidants, e.g. nitric acid, can cause violent reactions if they come into contact with ion exchange resins.

Toxicity

The safety data sheet must be observed. It contains additional data on product description, transport, storage, handling, safety and ecology.

Disposal

In the European Community Ion exchange resins have to be disposed, according to the European waste nomenclature which can be accessed on the internet-site of the European Union.

Storage

It is recommended to store ion exchange resins at temperatures above the freezing point of water under roof in dry conditions without exposure to direct sunlight. If resin should become frozen, it should not be mechanically handled and left to thaw out gradually at ambient temperature. It must be completely thawed before handling or use. No attempt should be made to accelerate the thawing process.

This information and our technical advice – whether verbal, in writing or by way of trials – are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to check its validity and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.

LANXESS Deutschland GmbH BU ION D-51369 Leverkusen

www.lewatit.com www.lanxess.com

This document contains important information and must be read in its entirety.

